| UNCRA&SS][F][ED

p 4014072

Reproduced
by the

)EFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEACIRIA, VIRGINIA

Bl

UNCLASSIFIED




B

NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
pent may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded dby implication or other-
wise as in any manner licensing the holder or any
other person or corporstion, or conveying any rights
or permission to mamufacture, use or sell any
patented invention that may in any way be related
thereto.




3 491402
RN R

Ef§ e——"

';“”Q‘ZMMETRIC DUAL NONLINEAR PROGRAMS
‘;:"" £y

D a:‘::.‘,,h:

by
G. B. Dantzig, E. Eisenberg and R. V. Cottle

OPERATIONS RESEARCH CENTER

INSTITUTE OF ENGINEERING RESEARCH

RESEARCH REPCRT 3C

20 DECEMBER 1942
LER, 172.35

A

UNIVERS!TY OF CALIFORNTA=BERKELEY



At .ohmd : s

SYMMETRIC DUAL NONLINEAR PROGRAMS

by

G.B. Dantzig, E. Eisenberg and R. W. Cottle
Operaticns Research Center
University of California, Berkeley

20 December 1962 Research Report 30

This research has been partially supported by the Office of Naval Research
under Contract Nonr-222(83) with the University of California. Reproduc-
tion in whole or in part is permitted for any purpose of the United States
Government. :




SYMMETRIC NONLINEAR DUAL PROGRAMS

I, Introduction

Most known results on duality in mathematical programming are very
closely related to the conditions under which

(M) max min K(x,y) = min max K(x,y)
veY xeX xeX vyeY

where the sets X ¢ R®, Y ¢ R™ and the function K: X x Y — R. Asasan
example, the duality of the two linear programming problems:
i) x >0, Ax>b, mincx

(1) .
ii) y 20, yA<c, maxyb

+
K(x,y) = ¢x + yb - yAx . The statement (M), or the equivalent saddle-point

is expressed by the statement (M) with X = R.: » ¥ = Rm ;nd

statement, avoids, among other things, one ,o‘i' the apparent features of many
duality formulations, i.e., asymmetry. ', for instance, the primal problem
" is taken to be -

(2) x € R", gi(x) <0 (i=1...,m) ,‘min go(x) .

where 8+ Bys o8y, aTe convex-differentiable functions of x € R" » then

a formal dual is

m
(3) x € RP, “12' O(i=1...,m), gb(x) - Zuigi(x)so,
i=

m

max [ g - Z aga |

is




where gi(‘x)‘ is the gradient of g; at x. Apparently, the dual problem (3)

is not, in general, of the same form as the primal problem (2). Furthermore,

while the objective function in (2) is assumed convex, the objective function

in (3) may be neither convex nor concave, indicating again a lack of symmetry.
In [3] one of the co-authors of this note discussed the situation . when in (M)
X = R: » ¥ = R.in » and K is given by: |

(4) K(x,y) = f(x) + gly) - yAx

with f,g convex-homogeneous and f, g, A further restricted by a ''feasibility"
condition. Results of Fenchel [5] (which may also be found in [7, p. 227])
péita-in to (M) with K as in (4) with f,g convex and X,Y closed convex
sets. The main result of this paper is what we believe to be a new duality
formulation. It can also be very profitably used in i_nvutigating general con-
ditions on X, Y and K under which (M) holds. ‘
Additional or related efforts in the area of duality are noted in the
bibliography: they include Wolfe' s duality theorem [11, Thm. 2] which states
that if the constraints in (2) satisfy the Kuhn-Tucker qualification [8,' p. 483]
and if Xq 'solves (2) then there is a u = (ul. cee ,um) such that the pair
(xo.. u) solve {(3' With the exception of special cases, such as quadratic
progfimmin‘g, the converse of Wolfe's theorem, as treated independently by
Huard [6] and Mangasarian [9], requires stronger assumptions. In fhiln
paper we present a pair of symmetric dual programming problems r»eiatcd
to the statement (M) . In a way, this represents an extension of results
obtained by one of this paper's co-authors in [1]. In section 2 we connect tho.
results in {!] with the dmltty theorem which is established in section 3.
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‘The work of Dorn [2] on quadratic programming exemplifies the fact
that the formulation of section 1 for primal and dual problems is asymmetric.

Dorn considers the primal problem (the sign of his b has been changed):

(5) Ax +520, x>0, minlzx'Cx +p'x),
and its dual (with a slight change in notation)

T

(6) eATy+Cx+p20. y>o0, max(--;:x C’x-bTy),

where C is a symmetric positive semi-definite matrix. It is shown in [1]

that there is a pair of naturally symmetric problems related by duality. They

are:
PRIMAL PROBLEM
Minimize %yTDy + éxTC‘x + pTx
(7) subject to Dy + Ax + b >0
x € R: , Y € Rf‘
and
DUAL PROBLEM
Maximize -%yTDy - %xTCx - bTy
(8) subject to -ATy‘ + Cx +p2>0

n m
x€R+ s yeR+

where both C and D are symmetric positive semi-definite matrices. In
particular, if C and D are identically sero, then (7) and (8) reduce cimply

to symmetric dual linear programs.
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II. The General Symmetric Duality Statement

Let K(x,y) bea real-va.lued and twice continuously diﬂ’erentiable

n+m_R x R™® oftheiorm Ux V

function defined on an open subset of R
where U is open in R™ and V is openin R™ . We define Kl(x, y) to be
the n-component column vector which is the gradient of K with respect to
the x-variable at the point {x,y) ; similarly, Kz(:':.y). is the .m-‘componont
column vector representing the gradient of K with respect to y at the

point (x,y) € U x V. We introduce a double subscript notation for the

matrices of second partials. Thus,
K,(x,y) = [SK("' ) —K%TL) yen
E:xﬂ%ﬂ i Ky y)

Kl l(xa y)

szl(xo y) =

']
T
n
SE
o
8
NN
[ WY
—
&
~
N
']

The dual programming problems we are primarily ¢oncerned with

in this paper @y be stated in general as:

PRIMAL (P) ' "DUAL (Pi)
T (Kl T o
Min [Kix,y) -y K,(x,v)] Max [K(x,y) - x” K, (x,y) ]
Bals XY
Subject to: Kz(x. y) <0 Subject to: Kl(x, y) >0
xt‘R:, y(R:_n xCR:. y!R:n
-4




as a apecial case, with K defined by

T

Tx - %yTCy - bTy - vy Ax

(10) Kix,y) = %xTCx +p

the primal and dual problems above reduce to the quadratic case (7) and (8).

The general strict case will consist of the two problems (P) and *

(P*) with K having the following properties:
K (1) K is real valued on the cartesian plc’bduct U x V (briefly,
K:UxV — R) where U and V are open subsets of R®
and R™ respectively, such that R: cvu, Rf‘ cVv. ,
(ii) K is twice continuously differentiable on UxV . t:
(iii) for each fixed x € R: , K it strictly concave in y .

(iv) for each fixed y € R_r,_n » K is strictly convexin x.

Observe that if we omit "strictly'’ in conditions (iii) and (iv) then with K as
given by (10.) fbr the quadratic case, a.ll the other conditions are satisfied.
The general strict case and the quadratic case are, of course, not mutually
exclusive; specifically, the quadratic case becomes an i»nstanc? of the other
providing C and D are both positive definite (hence, nonsingular).

We find it convenient to use a single symbol for the objective

*
functions in (P) and (P ):

§(x,y) = K(x,y) - Y,TKZ(x. ¥)

(1)
ﬂ(x. Y)

Kix,y) - x K (x,y)

Also, we denote by P the set of all pairs (x,y) satisfying the constraints of :

P), i.e., x c. R.: + Y € R:_n ) Kz(x. y) < 0 ; similarly, p* denotes the set 4

of all pairs (x,y) ufil!;ylng x € R.: y Y € R:n , and Kl(".' y)>0.

-5-




In the next section we state precisely what the duality relation
between (P) and (P*) is. At this point, it should be remarked that neithey
of the problems (P) and (P*) need be a convex programming problem.

For example, in (P) the objective or the constraint functions may fail to be
convex, and analogously in (?P*) . Furthermore, it should be noted that the
duality requirements defined in i:he next section are of the type which will

not hold unless some regﬁlarity conditions ‘are‘ imposed on the function

K(x,y) . In view of the possible absence of convexity (or concavity), the

Kuhn-Tucker theorem [8, p. 84] on necessary conditions of optimality
- seemns appropriate to obtain the desired duality relations. Thus, it appears
that the constraint qualification (see Appendix) is a suitable regularity

assumption. Ihdeed, thii Quumption is sufficient.

-6-




We shall say that a relation of duality holds between {P) and (")‘-
providing that the following two conditions hold:

(a) sup  nlx,y) < inf  §(x,y)
(x, y)e P (x, y)eP

and
(b) (P) is solvable if, and only if, (P*) is solvable, in which case
max 7 = min §
o" P
(Solvable means 'has an optimal soiution. ")

REMARK: the further condition:

‘(c) If exactly one of the programs is feasible then its objective

function is unbounded in the direction of optimization;

(Feasible means that there exist variables satisfying its constraints)

which holds for dual quadratic or linear programs (i.e., in the quadratic case,
see [ 1, theorem 3]‘ need not hold in the strict case," This mé.y be seen from
the example: K(x,.y) = e* - ¢V in this case (,P*) is trivially feasible while
(P) is infeasible; however n(x,y) = e* - ¢V - xe* which is bounded above
for (x,y) > 0. We shall show that.in the strict case’ a relation of duality
holds between (P) and (P*) proﬁding they satisfy a constraint qualification;

we begin by showing (a):

THEOREM 1: supn < inf §

p* P

. e . in the gohﬂqu strict case.

-T=
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Proof: Using the convention

sup N = - if P‘ is empty

P'

inf §
P

+00 if P is empty

we need only show that if (x,y)eP and (5:'.7)(1’"| then n(x,y) < &(x,y).
By definition of P and P* we have .

-Kz(x.y) <0, x>0, y>0

(12)

K,(xy) >0, x>0, y>0.
Thus:
(13) VK, (xy) <0, xTK,(%¥) >0
and
(14 VTK‘z(x. y)l - xTKI‘(E,?) <0.

Since K is convex-concave and differentiable we have (see [8] Vol. 1, p. 405,

No.lvii)
Ty == =Ty ;== = ey =
x K (xy) - x"K,(x,y) < K(x,y) - K(x,y)
(15)
T, , =T
Yy Kz(xo Y) -y Kz(xo Y) _<_ K(xo Y) - K(xtﬂ

Adding the two inequalities of (15), rearranging terms, and using (14), we
obtain:

A& = K& - %KX <

IA

K(x,y) - yTKz(x, y) + t\-FTKZ‘(X, y) - xTxl(;- y) ] £

IA

Kix, y) -y Ky(x,y) = &(xy)

-8
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completing the proof of Theorem 1.

NOTE: The proof of Theorem 1 does not require the "strictness" assumption

of (iil), (iv); only convexity-concavity and differentiability are essential.

From Theorem 1 follo,ws the obvious remark that if (‘xO'YO) ceP,

—_ P _— -

(;O’VO) € P have the property that §(x,,y,) < Wxy: Yo) then (xo.yo) and

(":'co,'y?o) are optimal solutions of P and'P* respectively. This will be used

in proving:

THEOREM 2 (Duality Theorem): Assume that P and P* satisiy the Kuhn-

Tucker constraint qualification. Then (P) 1is solvable if, and only if, (P*)'

is solvable, in which case

Proof: We shall show that if (x,y) solves (P*) then (x,y) also solves

(P) and E(x,y) = nx,y) (the proof of the converse is analogous). Consider

the function:
YUx,y,u) = Kixy) - x Kj(x,y) + 0 K (x,y)

By the Kuhn-Tucker optimality conditions [8, theorem 1], and since (x,¥)
solves (P'*) , there exists a vector u € R™ satisfying the following:

(16) ¥,(%7.9) = K (YT -%) <0

(17) V,ET = KET + K ENE - <0
(18) | V(57,9 = K (xy) >0

(19) T YETE ¢ T ET.E -

- ETKIIG:Y-KE -x) + -Y-sz(;‘oﬂ + ?sz].ﬁ-m -%)=

no_
. 9.
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It then follows that:
=T = oy= .y -
(22) x K, (x,y)u - x) = 0

@) FKED +T K GNE-T) =0 .

From (16) and (21) we get:

(24) TR EE-D < 0
and thus: |
(25) @- DK EE-B < 0.

But because K is strictly convex in x, it follows that Ku is a positive

definite matrix, thus u -x =0, i.e.,

(26) u o= x

It then follows from (17) and (26) that the pair (x,y) is feasible for (P).
From (26) and (19) it follows that

(27) FIKED =0 ,

while from (26) and {20) we obtain:
. 9 -T — -

(28) x KI(x.ﬂ =0.

We conclude that (X.7)ePAP" and (X 7) = n(%7) . Q.E.D.
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We state two immediate corellaries:

' COROLLARY I:
If either program (P) or (P*) is solvable then there is a joiat solution

(i.e., a pair solving both programs). |

Proof: It is clear from the proof of Theorem 2 that in the general strict
case the optimal solutions of (P) and (P*) are the same. For the quadratic

case see [1, Theorem &].

COROLLARY 2:

If (%7 isa joint solution of (P) and (P") then J K,(x,y) =0 = x' K;(%,7) .

!sropf:‘ For the general strict case note Equations (27) and (28); for the

quadratic case see the remark after Theorem 4 in [1].




APPENDIX

The Kuhin-Tucker Constraint Qualification

Suppose F(x) = [fl(x).fz(x), ey fm(x) ]T where each f“ is an
everywhere differentiable function of x > 0. Let x° be such a point. Taking

the partial derivatives of the functions fi at x°, we define
of, 1°
o i
T [W;] '

which is regarded as an m x n matrix, the ith

row of which is the gradient
(l}r’tnnposed) of the function fi evaluated at x° .

A Let x° bea boundary point of the (constraint) set C = {xcR: lF(x) > 0}.

Separate the inequalities F(x%) > 0, Ix® > 0 (where I isthe m x n identity

matrix) into

Fl(xo) =0 , I_Ixo =0 , Fz(xo) >0 , szp >0 .

That is, F, consists of the subset of functions f, in F which vanish at x°,

and F, consists of those which are poaitive at x° I, and I, are diagonal
matr‘iees having ones and zeros as diagonal entries. In particular, L has
ones in those rows where the components of x° are zero, and has zeros on
the rest of the diagonal. Iz has ones in the rows where x° has positive
components and has zeros on the remainder of its diagonal.

The Maximum Problem of Kuhn and Tucker [8, p. 483 ] is: Maximize

a differentiable function g(x) constrained by F(x) > 0, x > 0. Further
restrictions on the constraint set are required in order to make certain con-
clusions about an optimal solution of the maximum préblom. Thess restrictions

are embodied in the constraint qualification which we now state.

-12«




For every boundary point x° of C, any vector differential dx
satiefying the homogeneous linear inequalities

Fldx>0 , I,dx >0

is tangent to a differentiable arc contained in C . That is, to every dx
l.#tisfying the above inequalities, there corresponds an arc x = a(0) ,
0 <0 <1, with x° = a(0) , such that [da/d0] = \dx for seme positive

scalar \.

-13-
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